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We propose a scheme for generating nonreciprocal strong
mechanical squeezing by using two-tone lasers to drive a
spinning optomechanical system. For given driving frequen-
cies, strong mechanical squeezing of the breathing mode in
the spinning resonator can be achieved in a chosen driving
direction but not in the other. The nonreciprocity originates
from the Sagnac effect caused by the resonator’s spinning.
We also find the classical nonreciprocity and the quan-
tum nonreciprocity can be switched by simply changing the
angular velocity of the spinning resonator. We show that
the scheme is robust to the system’s dissipations and the
mechanical thermal noise. This work may be meaningful for
the study of nonreciprocal device and quantum precision
measurement. © 2024 Optica Publishing Group

https://doi.org/10.1364/OL.510053

Mechanical squeezing is one of the most significant quantum
effects, which plays an important part in quantum precision
measurements [1–3] and quantum information processing [4–6].
The generation of mechanical squeezing has been an impor-
tant goal in these fields. Many schemes have been proposed
to achieve mechanical squeezing [4–16]. Especially, by using
the reservoir engineering technique based on two-tone driving,
the generation of the strong mechanical squeezing (exceeding
the 3-dB limit [17]) has been realized in both theory [18] and
experiment [19].

On the other hand, nonreciprocal physics has attracted intense
attention due to its applications in signal transfer, communica-
tion, and the manipulation of light–matter interactions [20–23].
If a system behaves differently before and after exchanging the
input and output directions, the system is nonreciprocal. By
using light-atom coupling [24,25], synthetic materials [26,27],
and optical nonlinearity [28–31] to break the Lorentz reciprocity,
classical nonreciprocal effects have been achieved. Recently,
quantum nonreciprocal effects have also been discussed, e.g.,
nonreciprocal photon blockade [32–35], nonreciprocal entan-
glement [36–38], nonreciprocal mechanical squeezing [39,40],
and so on.

Motivated by these works above, in this Letter, we present
a scheme to realize nonreciprocal strong mechanical squeezing
in a spinning cavity optomechanical system driven by two-tone
lasers. Moreover, we find one can switch the classical nonre-
ciprocity (one-way flow of classical information, i.e., intracavity

mean photon number) and the quantum nonreciprocity (nonre-
ciprocal mechanical squeezing) by tuning the angular velocity
of the spinning resonator. We also demonstrate the system’s
robustness to mechanical thermal noise. Compared with the
existing schemes for nonreciprocal mechanical squeezing in
Ref. [39,40], the presented scheme can realize the nonreciprocal
strong mechanical squeezing (the degree of squeezing exceeds
3-dB limit) by using the simpler and more feasible experimen-
tal setup, and reveals the switch of the nonreciprocity between
classical regime and quantum regime.

The system we considered is depicted in Fig. 1(a). It consists
of a spinning resonator with angular velocity Ω and two par-
allel tapered fibers, and the spinning resonator is coupled with
tapered fibers through evanescent fields. The clockwise (CW)
or counterclockwise (CCW) mode of the resonator is driven
by two-tone lasers (with mean frequency ωl and detuning ∆c ≡

ωc − ωl) fed into fibers along the dashed lines or the solid lines.
The optical Sagnac effect induced by the resonator’s rotation is
characterized by the Sagnac–Fizeau shift, i. e., ωc → ωc + ∆F,
with [41]

∆F = ±Ω
nRωc

c
(1 −

1
n2 −

λ

n
dn
dλ

), (1)

where n (R) is the refractive index (radius) of the resonator, c
(λ) is the speed (wavelength) of light in the vacuum, and dn/dλ
is the dispersion term. The dispersion term characterizes the
relativistic origin of the Sagnac effect and can usually be ignored
because it is small in typical materials [41,42]. For the resonator
spinning clockwise, ∆F > 0 and ∆F < 0 refer to the shift of the
CCW and the CW modes of the resonator, respectively. When
the driving lasers are fed into fibers from the CCW direction,
the Hamiltonian of the system is

Ĥ = ℏωLâ†

LâL + ℏωmb̂†b̂ − ℏg0â†

LâL(b̂† + b̂) + Ĥdr,
Ĥdr = ℏ(α+e−iω+ t + α−e−iω− t)â†

L + H.c.,
(2)

where ωL(R) ≡ ωc ± |∆F | and ωm are the frequencies of CCW
(CW) cavity mode and the mechanical mode, respectively.
âL(R)(b̂) is the photon (phonon) annihilation operator. g0 =

(ωc/R) ×
√︁
ℏ/2mωm denotes the single-photon cavity optome-

chanical coupling strength, with m is the mass of the resonator.
ω± and α± are the frequency and amplitude of the two lasers.

Applying displacement transformation âj = aj+e−iω+ t +

aj−e−iω− t + d̂j (j = L, R) and b̂ = b + δb̂, in which aj± is the coher-
ent light field amplitude due to the two lasers. In order to drive the
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Fig. 1. (a) Schematic of the spinning optomechanical system.
A resonator spinning clockwise is transitorily coupled with two
parallel tapered fibers. Two-tone lasers enter the fibers along the
dashed (solid) lines to drive the CCW (CW) mode. (b) Theoretical
model for cooling the Bogoliubov mode using the cavity mode.
(c) Frequency spectrum of the system for generating mechanical
squeezing by CCW driving but not CW driving.

mechanical sidebands of the mean frequency ωl = (ω+ + ω−)/2,
we choose the frequency ω± = ωl ± ωm [18]. The linearized
Hamiltonian in the frame of Ĥ0 = ℏωld̂†

Ld̂L + ℏωmδb̂†δb̂ is

Ĥlin = − ℏG+(d̂†

Lδb̂
† + e−2iωm td̂†

Lδb̂ + H.c.)

− ℏG−(d̂†

Lδb̂ + e2iωm td̂†

Lδb̂
† + H.c.) + ℏ∆Ld̂†

Ld̂L,
(3)

where ∆L = ωL − ωl = ωc ± |∆F | − ωl is the effective opti-
cal detuning (ignoring g0(b

†

+ b) because of ωL/(b
†

+ b) ≫
g0). G± = g0aL± are the enhanced optomechanical coupling
strengths, where G±>0 and aL± ≫ 1 [18,43–46].

For G± ≪ ωm, we can perform the rotating wave approxima-
tion (RWA), and the Hamiltonian is given by

ĤRWA = − ℏG+(d̂†

Lδb̂
† + δb̂d̂L)

− ℏG−(d̂†

Lδb̂ + δb̂
†d̂L) + ℏ∆Ld̂†

Ld̂L.
(4)

By introducing a Bogoliubov-mode annihilation operator β̂ =
b̂ cosh r + b̂† sinh r, where r is the squeezing parameter defined
via tanh r = G+/G−, Eq. (4) can be written as Ĥ = −ℏG(d̂†

L β̂ +

d̂L β̂
†) + ℏ∆Ld̂†

Ld̂L, where G =
√︁

G2
− − G2

+ denotes the coupling
strength between CCW mode and Bogoliubov-mode. G+ < G−

is required to ensure the dynamics is stable [18,43–46]. CCW
mode and Bogoliubov-mode are coupled by the beam splitter
interaction [47,48], so the cavity can cool β̂ mode, as shown in
Fig. 1(b). Therefore, the mechanical squeezing can be obtained
by cooling β̂ mode to its ground state.

When the dissipation and input noises are considered, the
quantum Langevin equations of the system can be obtained [49]

̇̂dL =i
(︂
G+δb̂† + G−δb̂ − ∆Ld̂L

)︂
−
κ

2
d̂L +

√
κd̂in

L ,

̇δb̂ =i(G+d̂†

L + G−d̂L) −
γm

2
δb̂ +

√
γmb̂in.

(5)

For the case without RWA, G+ and G− in Eq. (5) need to be
replaced with G+ + G−e2iωm t and G− + G+e−2iωm t, respectively.
Here, κ(γm) is the cavity(mechanical) decay rate, and d̂in

j (b̂in) is
the zero-mean input noise operator for the optical(mechanical)
mode, respectively, characterized by the following correla-
tion functions [49]: ⟨d̂in

j (t)d̂
in†
j (t′)⟩ = δ(t − t′), ⟨b̂in(t)b̂in†(t′)⟩ =

(nth + 1)δ(t − t′), where nth = [exp(ℏωm/kBT) − 1]−1 is the mean
thermal phonon number, kB is the Boltzmann constant, and T
is the environmental temperature. By introducing quadrature
operators

δQ̂ =
1
√

2
(δb̂† + δb̂), δP̂ =

i
√

2
(δb̂† − δb̂),

Q̂in =
1
√

2
(b̂in† + b̂in), P̂in =

i
√

2
(b̂in† − b̂in),

δX̂j =
1
√

2
(d̂†

j + d̂j), δŶj =
i
√

2
(d̂†

j − d̂j),

X̂in
j =

1
√

2
(d̂in†

j + d̂in
j ), Ŷ in

j =
i
√

2
(d̂in†

j − d̂in
j ),

(6)

and defining the column vectors of quadrature fluctu-
ations and input noises as uT = (δQ̂, δP̂, δX̂L, δŶL), vT =

(
√
γmQ̂in,√γmP̂in,

√
κX̂in

L ,
√
κŶ in

L ), we can rewrite the quantum
Langevin equations as u̇(t) = Au(t) + v(t), where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−
γm

2
0 0 G+ − G−

0 −
γm

2
G+ + G− 0

0 G+ − G− −
κ

2
∆L

G+ + G− 0 −∆L −
κ

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

For the case without RWA, some maxtrix elements in Eq. (7)
should be replaced: A(1, 3)=−A(4, 2) = −(G+ + G−) sin(2ωmt),
A(1, 4) = A(3, 2) = (G+ − G−)(1 − cos(2ωmt)), A(2, 3) = A(4, 1)
= (G+ + G−)(1 + cos(2ωmt)), A(2, 4) = −A(3, 1) = −(G+ − G−)

sin(2ωmt), and all eigenvalues of A have a negative real part
to ensure the system stability according to the Routh–Hurwitz
criterion [50]. Due to the linearized dynamics of the quantum
fluctuations and the zero-mean Gaussian nature of the quantum
noises, the system will evolve into a Gaussian state indepen-
dent of the initial states [51], and can be completely described
by the 4×4 covariance matrix V(t) with elements defined as
Vkl = ⟨uk(∞)ul(∞) + ul(∞)uk(∞)⟩/2. Then we can derive the
motion equation of the covariance matrix:

V̇(t) = A(t)V(t) + V(t)AT(t) + D, (8)

where the diffusion matrix D = Diag[(nth + 1/2)γm, (nth +

1/2)γm, κ/2, κ/2, κ/2, κ/2]. For the steady state, Eq. (8) becomes
the Lyapunov equation [52]:

AV + VAT = −D. (9)

By solving Eq. (8) and Eq. (9), we can get the time-dependent
position variance and steady-state position variance of the
mechanical mode, respectively.

From the derivation procedure above, one can see the ratio
of coupling strengths G+/G− plays an important role, so we
first plot the steady-state position variance ⟨δQ̂2⟩ for a station-
ary resonator (Ω = 0 Hz) versus G+/G− in Fig. 2(a), which
shows there is an optimal value for G+/G−, and the opti-
mal values are not the same for different ∆c. That is because
the larger G+/G− the larger squeezing parameter r that leads
to the decrease of the position variance. However, when
G+/G− → 1, G =

√︁
G2

− − G2
+ → 0, means the cooling ability

is suppressed and the position variance will be increased. In
Fig. 2(a), we choose experimentally feasible parameters [53–57]:
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Fig. 2. (a) The steady-state position variance ⟨δQ̂2⟩ versus G+/G−. Ω = 0 Hz. See text for other parameters. (b) The time evolution of
the degree of mechanical squeezing S without rotating wave approximation (NRWA) and with rotating wave approximation (RWA). L and
R denote driving the resonator from the CCW and CW direction, respectively. τ = π/ωm. ∆c ≡ ωc − ωl = −|∆F |, Ω = 7.7 kHz. The other
parameters are the same as in (a). (c) S versus ∆c/ωm for different driving directions. The parameters are the same as in (b).

n = 1.48, R = 1.1 × 10−3 m, T = 130 mK, ωm = 63 × 106 Hz,
γm = 0.5 kHz,ωc = 1.22 × 1015 Hz, κ = 0.3ωm, and G− = 0.2 κ.

Figure 2(b) shows the dynamics of the degree of mechan-
ical squeezing for the spinning resonator driven by two-tone
lasers along CCW and CW directions, where the frequencies of
two-tone lasers are chosen to satisfy ∆c ≡ ωc − ωl = −|∆F |, as
shown in Fig. 1(c). The degree of squeezing is defined in units
of dB S = −10 log10

⟨δQ̂2⟩min
⟨δQ̂2⟩vac

, where ⟨δQ̂2⟩min is the position vari-
ance corresponding to the optimal G+/G−, and ⟨Q̂2⟩vac =

1
2 is the

vacuum quantum fluctuation. It can be seen that, for the given
driving frequencies, the mechanical squeezing can only be gen-
erated by CCW driving but not CW driving. For exhibiting the
nonreciprocal mechanical squeezing more clearly, we plot the
steady-state degree of squeezing S for t = 6000τ versus ∆c/ωm

in Fig. 2(c), which shows, for ∆c < 0, mechanical squeezing can
be generated by driving the resonator from the CCW direction
but not from the CW direction; while for ∆c > 0, the opposite is
true. Meanwhile, the degree of squeezing exceeds 3-dB limit, so
the nonreciprocal strong mechanical squeezing can be achieved.
The inset of Fig. 2(c) shows the position variance correspond-
ing to S. The dot-dashed (solid) lines in both Figs. 2(b) and
2(c) indicate the results obtained without (with) RWA. The two
results obtained using the Hamiltonians Eq. (3) and Eq. (4) agree
well with each other, indicating that the RWA is valid [58].

We now study the classical nonreciprocal effect in the pre-
sented system by calculating the intracavity photon number of
the driven mode and explore the relation between the classical
nonreciprocity and the quantum nonreciprocity. The intracavity
photon number of the driven mode is Nj ≡ |aj |

2. We can obtain
the coherent light field amplitude aj ≃ aj+e−iω+ t + aj−e−iω− t from
quantum Langevin equations [43–45,59], where aj± = α±/(ω± −

ωj + i κ2 ), |α± | =
√︁

2κP±/ℏω±, and we assume aj± are real by
choosing the proper phases of the driving fields. P± is the input
laser power. We plot the steady-state degree of squeezing S and
intracavity photon number of the driven mode Nj as a function
of ∆c/ωm in Fig. 3 with P− = 0.95 mW, and P+ is determined
by P− and the optimal G+/G−. The angular velocity of the spin-
ning resonator Ω = 7.38 kHz for Fig. 3(a), and Ω = 6.3 kHz for
Fig. 3(b). For ∆c/ωm ∼ −0.82, whenΩ = 7.38 kHz, the quantum
nonreciprocity exits without any classical nonreciprocity; how-
ever, whenΩ = 6.3 kHz, the classical nonreciprocity exits while
the quantum nonreciprocity is absent. It means we can switch
the quantum nonreciprocity and the classical nonreciprocity for

Fig. 3. Switch between the quantum nonreciprocity and the clas-
sical nonreciprocity. (a) Nonreciprocal strong mechanical squeezing
exists with classical reciprocal intracavity photon number for Ω =
7.38 kHz. (b) Classical nonreciprocal intracavity photon number
exists with reciprocal strong mechanical squeezing forΩ = 6.3 kHz.
m = 10ng, P− = 0.95 mW, and the other parameters are the same as
in Fig. 2(c).

Fig. 4. (a) Steady-state degree of squeezing S versus the decay
rates κ/ωm and γm for T = 130 mK; The black dash lines indicate
S = 0 and 3 dB. (b) S versus the temperature T for κ/ωm = 0.3 and
γm = 0.5 kHz. Ω = 0 Hz, ∆c/ωm = 0 and the other parameters are
the same as in Fig. 2(c).
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a single device by simply tuning the angular velocity of the
spinning resonator.

The robustness of the scheme against dissipations of the sys-
tem and the environment temperature is demonstrated in Fig. 4.
We plot the steady-state degree of squeezing S versus the decay
rates κ/ωm and γm at temperature T = 130 mK in Fig. 4(a),
and versus the temperature for κ/ωm = 0.3 and γm = 0.5 kHz
in Fig. 4(b). It shows that the squeezing and even the strong
squeezing are present for a wide range of both κ and γm, and the
squeezing can be still achieved even for T ∼ 650 mK.

In conclusion, we have proposed a scheme to realize the non-
reciprocal strong mechanical squeezing in a spinning cavity
optomechanical system driven by two-tone lasers. The results
show that the strong mechanical squeezing only occurs when
the two-tone lasers with given frequencies drive the resonator
from one direction but not the other. The validity of the theoret-
ical derivation is demonstrated by using the full Hamiltonian to
numerically simulate the results. We show the presented system
can serve as either a classical nonreciprocal device or a quan-
tum nonreciprocal device by choosing the appropriate angular
velocity of the spinning resonator. The scheme is robust against
dissipations and environmental temperature, and all results are
based on the feasible parameters in experiment. Therefore, this
work may provide effective methods for the study of quantum or
classical nonreciprocal device and direction-dependent quantum
precision measurement.
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